
Simulating Multiple Micro-Aerial Vehicles and a Small

Unmanned Aerial Vehicle in Urban Terrain Using

MultiUAV2

S. J. Rasmussen∗, M. W. Orr†, D. Carlos‡, A. F. Deglopper§, B. R. Griffith¶,
Air Vehicles Directorate, Air Force Research Laboratory, Wright-Patterson AFB

Much of modern warfare is conducted in built-up areas. This has created challenges
in detecting and tracking potential targets. Because of their size micro-aerial vehicles
(MAVs) can be used to get in close to identify and track targets. The ability of MAVs
to perform visual surveillance of “over-the-horizon” targets is limited by their range. The
MAV’s usefulness can be enhanced by releasing them from small uninhabited aerial vehicles
(SUAVs) over the urban area. This paper details the components necessary to simulate
MAVs being dropped into urban areas, in teams, to perform surveillance on pre-identified
targets. The mission is explained. After that we describe MultiUAV2, the MAV and SUAV
dynamics models, the mission sensor, and the urban terrain model, and the built-up area
wind model.

I. Introduction

The advent of micro-air vehicles (MAVs) and small unmanned aerial vehicles (SUAVs) has made it
possible to perform new surveillance missions. Modern warfare has created the need to detect and track
potential ground targets in hostile built-up environments. Therefore it is logical to investigate the use of
MAVs to detect and track these targets. Because of their size, MAVs have the potential to fly in close
enough to objects for operators to identify them. The problem with using MAVs in this manner is they are
severely limited by their usable range, i.e. flight times of less than an hour. Since SUAVs can have flight
times of many hours, a potential solution is to carry MAVs on board a SUAV and then drop the MAVs
in the vicinity of targets, thus providing maximum surveillance time for the MAVs. Investigation and flight
test of this concept is the aim of the “Cooperation Operations in UrbaN TERrain” (COUNTER) program
being conducted by the Air Force Research Laboratory.

In order to test concepts for COUNTER a research simulation has been constructed that makes it
possible to evaluate the use of SUAVs and MAVs in built-up areas. The simulation was constructed by
adding new capabilities to an existing simulation, MultiUAV2. MultiUAV2 is multiple vehicle simulation,
based on Simulink, MATLAB, and C++, that makes is possible to simulate multiple unmanned air vehicles
(UAVs) operating cooperatively to perform set missions. In order to simulate the COUNTER concept
vehicle dynamic models, optical mission sensors, urban wind models, and building and street models were
added to MultiUAV2. This paper details the components necessary to simulate the COUNTER mission
to perform surveillance on pre-identified targets. First the mission is explained. After that we describe
MultiUAV2, the MAV dynamics model, the mission sensor, city model, and the urban wind model.

II. COUNTER

A layout of the general concept of operations of the COUNTER concept is shown in Figure 1. The
SUAV will be launched from a forward area and fly over a city, town, or other area of interest. The SUAV

∗Steven Rasmussen is a General Dynamics Senior Aerospace Engineer. steven.rasmussen@wpafb.af.mil
†Matthew Orr is an Research Aerospace Engineer. Matthew.Orr@wpafb.af.mil
‡David Carlos is an Developmental Control Systems Engineer. David.Carlos@wpafb.af.mil
§Anne Deglopper is Student Trainee (Aerospace Engineer) from the University of Maryland. Anne.Deglopper@wpafb.af.mil
¶Barton Griffith is Student Trainee (Aerospace Engineer) from the University of Cincinnati. Barton.Griffith@wpafb.af.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Simulating Multiple Micro-Aerial Vehicles and a Small Unmanned Aerial
Vehicle in Urban Terrain Using MultiUAV2

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Air Vehicles Directorate,Wright
Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

will act as the “mother ship” and carry the MAVs.1 The SUAV will observe the area of interest from
an altitude sufficient for survivability and potential targets will be designated through the video imagery
transmitted to the human operator on the ground as illustrated in Figure 1. When a positive identification
cannot be made of a potential target due to target obscuration or insufficient sensor resolution a MAV is
launched to take a closer look at the target. The MAV provides the needed viewing angle and distance to
target to provide the operator with positive target identification. The launched MAV is then available for
re-tasking to examine other targets of interest within the area of operations. When multiple high-priority
targets are sensed in a short period of time multiple MAVs are required to accomplish the verification
mission. The MAVs will be recovered if convenient but are considered expendable. The purpose of this
staged system is to get time-sensitive information unobtainable by other means.

Figure 1. COUNTER concept of operations.

Figure 2 shows the physical rational for this staged MAV/SUAV system. The figure shows a SUAV
operating at an altitude needed for sensor coverage of a wide area while placing the SUAV vehicle a survivable
distance from the possible target. The distance d1 from the target to the small UAV is much greater than the
distance d2 from the target to the MAV. The MAV needs to get close to the target in order to get the both
the angle needed to view it and get enough pixels on the target to achieve a positive identification. Figure 2
illustrates the point that no matter how good the optical sensor on a high-flying UAV or SUAV is there are
still categories of targets that cannot be seen. The obscuration can be caused by manmade means such as
buildings, tents, covers, pollution degrading sensor resolution, or smoke. Natural causes could include clouds
and dust that render images taken from standoff distances less useful than those from short distances. This
heterogeneous system of vehicles will provide a staged team capable of providing persistence, range and the
ability to provide positive identification of an obscured target in an urban environment. The SUAV will
serve as the communications relay for the MAV and may also provide processing of the MAV video signals.
Some of the autonomous decision making/planning capability will be carried aboard the SUAV in the final
version of this concept.

III. MultiUAV2

In order to implement and evaluate cooperative control strategies for UAVs, MultiUAV2, a Simulink-
based multi-vehicle/multi-agent simulation, was developed.2 MultiUAV2 is capable of simulating multiple
vehicles, targets, and threats. Simulated vehicles include embedded flight software (EFS) and vehicle dy-
namics. EFS is the software that implements cooperative control algorithms. The vehicle dynamics are
simulated with six-degree-of-freedom equations of motion and non-linear aerodynamics. The vehicle model
includes an autopilot that makes the vehicles capable of waypoint navigation. An inter-vehicle communica-
tion simulation makes it possible to send and record messages between the vehicles.

Integration of the COUNTER mission into MultiUAV2 required changes to MultiUAV2 allowing multiple
missions types. MultiUAV2 was developed for the study of cooperative control in a wide area search munition

Figure 2. COUNTER sensor placement.

type missions. In order to add the capability to simulate new missions, Matlab structures were developed
that define the missions, including the number and types/capabilities of vehicles need for the mission. To
implement new missions, the state transition functions that define the order that tasks are performed were
modified to be selectable based on the selected mission. Other changes to MultiUAV2 included modifications
to task trajectories, addition of multiple initial search patterns, addition of new vehicle dynamics, see §IV,
addition of an optical sensor simulation, see §V, and addition of a urban terrain model, see §VI.

IV. Micro-Air/Small Vehicle Simulation Models

COUNTER requires both SUAV Figure 3, and MAV Figure 4 vehicle models. To meet this requirement
new vehicle dynamics models were developed by generating new aerodynamic tables and physical parame-
ters which were inserted into MultiUAV2’s vehicle dynamics simulation. Vehicle dynamics in MultiUAV2 are
generated using a simulation called Variable Configuration Vehicle Simulation (VCVS).

VCVS is a nonlinear six-degree-of-freedom vehicle simulation that includes a control system which recon-
figures the simulation for new aerodynamic and physical vehicle descriptions. VCVS is written entirely in
C++ and can run more that 20 times faster than real time. Vehicle dynamics are based on two configuration
files, one containing aerodynamic data and the other physical and control system parameters. The aerody-
namic configuration file contains tables of non-dimensional forces, moments, and damping derivatives. The
vehicle model calculates aerodynamic forces and moments by using the vehicle’s state and control deflections
as independent variables to look-up values from the aerodynamic tables. During the look-up process, linear
interpolation is used for states and deflections not found in the tables. The non-dimensional values obtain
from the tables are combined with vehicle state data to calculate forces and moments acting on the center of
gravity of the vehicle. These forces and moments are combined with external forces and moments, i.e forces
and moments from an engine. The forces and moments are used, along with the physical parameters, to
calculate the equations of motion. Included in the model are first-order actuator dynamics, including rate
and position limits, and first-order engine dynamics.

By default VCVS uses a control system based on dynamic inversion with control allocation as its inner
loop. A rate control system was wrapped around the inner loop to move from angular acceleration commands
to angular rate commands. Finally, outer loop controls were added to control altitude, heading, sideslip,
and velocity. This was the control system used for the SUAV. For the MAV a different control system was
implemented that was more in line with the class of control systems that are implemented on MAVs.

Figure 3. Small UAV.

Figure 4. Micro-Air Vehicle

V. Optical Sensor Simulation

As part of the mission, an optical sensor is used to collect and relay images from the MAV to the small
UAV and then on to an observer. In this simulation, the process of image collection and identification
is simulated through the use of a sensor footprint, attached to the simulated MAV vehicle, a heading
dependent template, attached to the target, and stochastic decision rules. For this simulation, the work
centered on constructing sensor footprints that represent optical sensors. The heading dependant template,
and the stochastic decision rules were based on those already in MultiUAV2. For the COUNTER scenario
two types of sensor foot prints were developed, fixed footprints and vehicle state dependant footprints. The
fixed footprints have a fixed boundary that moves based on the motion of the vehicle. The vehicle state
dependant footprints have boundaries that are calculated at each time step based on the state of the vehicle,
i.e. altitude and attitude. The fixed footprints take less time to execute, but are less accurate.

A. Fixed Elliptical Sensor Footprint

A fixed elliptical footprint was developed for use with the MAV simulation. The inputs for the footprint are
the aircraft’s position and heading angle, the lengths of the major, a, and minor axes, b, of the ellipse, and
the offset of the center of the footprint in front of the aircraft, Laf , shown in Figure 5. When set to zero,
Laf indicates that the center of the footprint is directly below the vehicle. Based on these parameters, the
positions of the foci of the ellipse, f1 and f2, can be calculated. In order to determine if any of the targets
are inside the elliptical footprint, the distances between the foci and the target are calculated. By definition,
if the sum of these two lengths is less than or equal to the major axis, of the ellipse, then the target is inside
the elliptical footprint. For example, given two targets, T1 and T2, the distances between the targets and
the foci are defined as, L1i and L2i, see Figure 5. For each target, if the equation:

L1i + L2i <= a (1)

holds, then the target is inside the elliptical sensor footprint.

Figure 5. Fixed elliptical footprint.

B. Variable Sensor Footprints

Two vehicle state-dependant variable sensor footprints were developed, one for trapezoidal shapes and one
for elliptical shapes.

1. Trapezoidal Sensor Footprint

The trapezoidal sensor footprint is tracked using four rays that extend from each of the four corners of a
rectangular sensor face. The intersection of these four vectors with a flat surface creates the four corners of
the trapezoidal sensor footprint. Each of the four vectors has an X, Y and Z component in the aircraft’s
body axes. The Z component has the same magnitude as the camera’s altitude. The other two components
can be derived from the geometry.

Figures 6 and 7 illustrate the relationship between the X, Y and Z components based on the effective
depression angle, α, and the effective horizontal sweep angle of the camera, β. In the figures, one of the four
rays, that represent the sensor footprint, is represented as a red line. The point where the upper end of the
ray meets the axes is defined as the sensor position. The following equations assume the camera is located
at the center of gravity of the vehicle. Using trigonometry the following relationships are derived:

Y =
Z

tan(α)
(2)

and,
X = Z csc(α) tan(β) (3)

Figure 6. Relationship between Y, Z and α for the trapezoidal sensor footprint

The effective upper depression angle, αU , or the effective lower depression angle, αL, see Figure 8, is
the sum of the cameras depression angle γ, the camera vertical sweep angle λ, from center of camera to the
upper (+) or lower (-) most edge, and the pitch, θ, of the aircraft. The effective horizontal sweep angle,
β, is the sum of the cameras horizontal sweep angle plus some additional change due to the bank of the
aircraft. The additional change due to the bank makes this angle more difficult to derive. Derivation, yields
the following relationship between β and βyz.

β = arctan
[
tan(βyz) sin(α)

cos(θ)

]
(4)

2. Elliptical Sensor Footprint

The elliptical sensor footprint is tracked by the vectors that extend from the camera to each of its four
vertices shown in Figure 9. However, if the aircraft has a non-zero bank angle the ellipse will actually be
tilted to the left or right and the four points being tracked will no longer intercept the ground at the ellipse
vertices. In either case, these four points can be tracked using the equations derived to track the four corners
of the trapezoid. The fact that the four points are generally not the vertices of the ellipse makes plotting
the ellipse a real challenge. Notice that the center of the ellipse is at the intersection of the two imaginary
straight lines connecting points 1 & 3 and 2 & 4. A straight line can be drawn from the camera position
through the center of the ellipse and two of its vertices. Using the location of the center (xc,yc), the tilt
angle of the ellipse, φe, can be found with the following equation:

Figure 7. Relationship between X, Y, Z, and β for the trapezoidal sensor footprint

Figure 8. Effective depression angle.

φe = arctan
(

xc

yc

)
(5)

Once φe is known, the coordinate system can be rotated so that the X and Y axes parallel the axes of
the ellipse.

X = x cos(φe)− y sin(φe) (6)

Y = x sin(φe) + y cos(φe) (7)

Now that the coordinate system parallels the ellipse axes, the following equation can be used to plot the
ellipse.

X2 + AY 2 + BX + CY + D = 0 (8)

Notice, that there are four constants (A,B,C & D) that are unknown. However, since there are four sets
of coordinate pairs that are known, there are four equations which can be solved simultaneously to yield
these constants (which define the ellipse). The four coordinate pairs are transformed to the rotated system
before the constants are evaluated.

Figure 9. Track points for the elliptical footprint.

VI. Urban Terrain Model

In order to incorporate the effects of urban terrain, MultiUAV2 was modified to accommodate simulation
of the effects of buildings and streets. At the very minimum, simulating an urban terrain scenario required
simulating blocked lines of sight due to buildings. This was accomplished by requiring that the vehicle and
the target are on the same street and the target be in the sensor footprint before the target is reported being
in the sensor footprint. To implement the urban terrain, a city model was constructed in a 3-dimensional
drawing software package and imported into MultiUAV22 using city management functions. The model
includes buildings and streets. At this time, only the streets are used to simulate the city, the building will
be incorporated later. To use the city model, utilities were developed to place targets within the city and to
manage streets.

The simulated city was designed to include common features of a typical small city. Figure 10 illustrates
the location of these particular sections of town. The center of the city contains the layout of a real-world
urban operations site. The real-world urban operation site will be used later for live testing. The road layout
of the city, with the main roads of the city highlighted in Figure 11, was structured to give common traffic

patterns. In this small city are large parking lots, commonly found near industry or schools, and there are
main streets that segment the city.

Figure 10. Simulated city.

A. Target Placement Utility

Since the city is large it is difficult to find the precise coordinates to place targets in desired locations.
A Graphical User Interface (GUI), shown in Figure 12, accessed from the main menu of the MultiUAV2
simulation, provides target placement functionality. The user initially selects the target position using cross-
hairs, after which the target position is shown by a red dot and the coordinates are available in both the
legend and in the Matlab workspace. The target heading is specified by selecting a start point and an end
point in the direction of the target. The heading, represented in the utility by a dark red line, is available
in the legend and the Matlab workspace.

B. Road Management Utility

To facilitate the grouping of polygons into roads, there is a GUI which provides a visual click-and-point
utility. This utility is accessed from the MultiUAV2 main menu and displays a graphical representation of
the City Roads. Using the mouse, individual polygon sections are selected and grouped into single roads for
the purpose of the simulation, as shown in Figure 13. When the user is finished, the modified road map is
written in the original text file format and in the MAT file format for subsequent uses of MultiUAV2.

C. Simulated City Implementation

At the start of the simulation, the road data is parsed and loaded from text files during the initialization
phase. The road map is static and a single instance is available to all the vehicles throughout the duration of
the simulation. At the end of the simulation, the road map data is destroyed. If the user chooses to plot the
simulation visually, the road data is loaded into Matlab from a MAT file format and displayed in the figure
window. At each time step of the simulation, the sensor footprint functions follow the flowchart illustrated
in Figure 14 to determine whether or not the target can be observed from the vehicle. The vehicle queries
if the target is located on a road, using a point-in-polygon grid test. If the target is off the road, the vehicle

Figure 11. City roads.

Figure 12. Target placement utility.

Figure 13. Road management utility.

finds the target if the target is within in the sensor footprint. Otherwise, if the target is determined to be
on a road, then the vehicle must determine if the vehicle position is also on the same road.

VII. Wind Model

The wind data for input to the MAV simulation is designed to be read in from a tabular data file. This
table contains the X, Y, and Z position and the magnitude and direction of the wind at each point in space.
At the start of each simulated time step, an interpolation is performed in order to find the wind value at the
vehicle’s location in space. These values are passed to the simulation dynamics algorithms and are included
in the solution for the new vehicle state.

In order to generate a representative wind field a real-world urban operations site was modelled in a 3D
CAD program. This model was then imported into a software package used to build a computation grid
around the physical geometry data, which was used to interface with computational fluid dynamics codes.
The grid was built by triangulating all the building and exterior domain surfaces. The mesh cells on the
building walls were triangles with side length no greater than 12 inches. The entire computational domain
was filled with tetrahedrons mapped from the boundary domains. The total grid contained 1,970,076 cells.
Using this grid a flow field was resolved and processed by placing normalize grid points at 1 ft spacing
throughout the region of interested around the buildings. The u, v, and w components of velocity at each
of the normalized grid points were written out to a binary file. This binary file was, in turn, was converted
by a Matlab script for use with MultiUAV2 simulations. The magnitudes of the u and v components of the
velocity were then mapped onto a constant altitude plane and shown as vectors. Figures 15 and 16, show
the wind vectors and include contour planes to indicate potential lines of constant velocity. The regions
occupied by buildings are shown, in the figures, as areas of zero velocity.

VIII. Summary

This paper described the simulation elements that were constructed and integrated into MultiUAV2 to
simulate a proposed surveillance mission that uses MAVs and SUAVs in an urban environment. The
COUNTER mission takes advantage of the different capabilities of the two vehicles to identity potential
targets from higher altitude, with the SUAV, and then send a MAV down to a low altitude to get a closer

Figure 14. Flowchart for determining whether or not a target can be observed.

−200 −150 −100 −50 0 50 100 150 200

Interpolated grid at Z=11

2

4

6

8

10

12

14

16

18

20

Figure 15. Interpolated values from the wind field data.

−50 0 50

Interpolated grid at Z=11

Figure 16. Close up of interpolated wind field data.

view of the target, from a better angle. In order to simulate this mission changes were made and new
vehicle dynamics were added to MultiUAV2. Since MultiUAV2 was designed to simulated a wide area search
munition scenario, it was necessary to add Matlab structures to make other missions possible. New vehicle
dynamics were developed though the use of vehicle geometries and DATCOM to estimate aerodynamic
parameters. The parameters, along with estimated physical parameters are used in MultiUAV2’s VCVS
dynamics simulation to simulate both the MAVand the SUAV. In order to simulate the optical sensors on
both of the vehicles, new sensor footprint algorithms were developed and implemented. To simulated the
effects of city buildings on the MAV’s ability to view targets, new functionality was added that makes it
possible to define city buildings and streets in a 3D CAD packages and then translate the resulting data file
into a form that can be used by MultiUAV2. Finally, because of the susceptibility of the MAV to winds, a
wind model was incorporated into MultiUAV2 that makes it possible to look-up the three dimensional wind
vector for each position of the vehicle.

References

1Orr, M. W., Rasmussen, S. J., Karni, E. D., and Blake, W. B., “Framework for Developing and Evaluating MAV Control
Algorithms in a Realistic Urban Setting,” Proceedings of the 2005 American Control Conference, Portland, OR, 2005.

2Rasmussen, S. J., Mitchell, J. W., Chandler, P. R., Schumacher, C. J., and Smith, A. L., “Introduction to the MultiUAV2
Simulation and Its Application to Cooperative Control Research,” Proceedings of the 2005 American Control Conference,
Portland, OR, 2005.

